3.3 噪声 (Noise)
“噪声”的广义定义是:在处理过程中设备自行产生的信号,这些信号与输入信号无关。
由于电子的无规则热运动产生的噪声在所有电子设备中普遍存在,是不可避免的,因此被重点研究,并赋予了很多名字,如本底噪声、固有噪声、背景噪声等,英文中常见noise floor, background noise等提法。如下图所示,器件的温度越高,电子的热运动越剧烈,产生的噪声也就越大。

真实世界中的所有信号都是叠加了噪声的,图像信号也不例外,如下图所示,当有用信号的幅度小于背景噪声时,这个信号就淹没在噪声中而难以分辨,只有当有用信号的幅度大于噪声时这个信号才是可分辨的。

假设照明强度恒定、均匀,相机拍摄图像中的噪声是测量信号中空间和时间振动的总和。下图以传递函数的形式总结了CMOS sensor 光、电转换模型以及几种主要噪声的数学模型。

下图更加细致地描述了CMOS sensor 成像过程中各种噪声的来源和作用位置。

下图是对噪声图像的数值分析。

在了解各种噪声类型之前首先回顾一下概率与统计课程中学习过的泊松分布公式,后面将多次遇到这个分布。


泊松分布是最重要的离散分布之一,它适合描述单位时间内随机事件发生的次数。举例来说,假设某高速公路在某时段的车流量是每小时1380辆,平均每分钟23辆,可是如果进一步以分钟为单位进行统计,我们就会发现某一分钟只通过了15辆,而另一分钟则通过了30辆,这个概率分布就需要用泊松分布来描述。同理,我们可以把这个例子中的车流换成芯片内流过PN结的电子流,或者换成通过镜头入射到像素的光子流,这两种情况在统计意义上是完全一样的,都需要用泊松分布来描述。
下面这篇文章较详细地解释了泊松分布的推导过程和它的现实意义。
sensor 噪声中含有几部分分量:
暗散粒噪声(σD): 硅片中电子的热运动会导致一些价电子随机激发至导带中形成暗电流(dark current),所以即使完全没有光子入射,sensor也会存在一定的信号输出。在曝光过程中,暗电流的随机变化即形成暗散粒噪声。暗电流变化的主要原因是电子穿过PN结时会遇到PN结的电势屏障(barrier),电子穿越屏障需要经历动能-势能-动能的转换过程,所以需要耗费一些时间。暗散粒噪声在统计上服从泊松分布,与光信号的高低水平无关,但与传感器的温度有关,一般的规律是温度每升高8°C暗电流翻一倍。所以在设计电路时必须注意把容易发热的电子元件尽可能布置在远离sensor的地方。


读出噪声 (σR): 该噪声是在产生电子信号时生成的。Sensor中使用AD转换器(ADC)将模拟放大器输出的模拟电压采样为数字电压。由于数字信号的精度总是有限的,通常为10比特至14比特,幅值位于两个相邻数字之间的模拟信号会四舍五入到最接近的数值,所以这个过程会引入量化噪声,这是读出噪声的重要组成部分。该噪声由传感器的设计决定,意义是至少需要多少个电子才能驱动读出电路的ADC变化一个比特。它与信号高低水平和传感器温度无关。


还没有评论,快来抢沙发!